

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

Heifer Health Events are Critical

10 March 2021 Biomin GmbH Zanetta Chodorowska TSM Ruminant

Vaccination

Stress

Calving area

Housing

Ventilation

Calves disease control-Key principles

- Removing the source of infection from the calf's environment
- Remove the calf from contaminated environment
- Increase immunity
- Reduce stress

Redstits and Acres Can.Vet.Med 1980

 Calves left with dam for >1hour was a majority factor of Cryptosporidium diarrhea (Prev Vet Mad 2007; 82:12-28)

Neonatal calves- disease prevention

Focuse on management.

The vast majority of disease and health problem stem from management.

There is no magic powder to overcome poor colostrum program or poor hygiene.

In calves we have diarhea coused by roto virus or cryptosporidia and respiratory disease we have the same disease we had for 50-100 years.

We still have the same menagment problems we had before.

Facts and consideration on early calves feeding

Colostrum Oligosaccharides

- Colostrum related issues
- Time/temperature important
- Bacteria is large problem
- May be an upper limit to IgG uptake
- Other proteins are denatured
- Feeding strategy
- Rumen microbial establishment

What's in colostrum?

Immunoglobulins	>100:1	immune function
Lactoferrin	>15:1	local immunity effect in gut
IGF-I	80:1	
IGF-II	20:1	
Epidermal growth factor	2:1	
Insulin	100:1	local gut effects
Interleukines	> 100:1	100000000
Relaxin	19:1	reproductive development
Prolactin		little data
TGFα and TGFβ	> 100:1	
Leptin		hypotahlamic pituitary axis
Leucocytes		immune function
		Clide Country of De Mar

Facts on calf morbidity and mortality

- 1. We still have a preweaned heifer calf mortality rate 6-7%
- 2. Only 40% of farms can supplay their own replacement heifers
- 3. The majority disease remain diarhea 60% pneumonia 24% and septicemia
- 4. Poor colostrum management 30-40% of Failure

	1991	1996	2002	2007	2014
Pre-weaned calf mortality	8,4%	10,8%	10,5%	7,8%	6,4%
% of deaths caused by diarrhea	52,2%	60,5%	62,1%	56,5%	56,4
% of death caused by pneumonia	21,3%	24,5%	21,3%	22,5%	24,0
Weaned calf mortality	2,2%	2,4%	2,8%	1,8%	1,9%

2014 estimates are preliminary Dr Jason Lombard

Colostrum Nutrient Composition /Immunoglobulins -Immunosuppressed animals -

ltem (%)	Mean	Min	Max
Fat	6.70	2.0	26.5
Protein	14.92	7.1	22.6
Lactose	2.49	1.2	5.2
Total solids	27.64	18.3	43.3
Ash	0.05	0.02	0.07

Survey of 55 colostrum samples from PA farms Kahoe et al., 2007 Avoid dam-to-calf disease transfer through manure, meals by providing a clean, dry calving environment.

6.8kg/head >70% of a good quality

∃Biomin∃

Colostrum bacteria distribution Effect of heat treatment

(Bacteria count CFU/ml)

SPC = standard plate countCC = coliform count;Houser et al., 2008

E. Coli entering intestine epithelial cell Destruction of microvilli

Colostrum deprived calf

Dark areas represent absorbed Ig

Colostrum fed calf

Slide Courtesy of Dr. James

Effect of heat treatment of Colostrum Total immunoglobulin concentration

Changes in total IgG concentration in bovine colostrum

Changes in viscosity (Δ) and standard plate count (\Box) in bovine colostrum

J. A. Elizondo-Salazar , Journal of Dairy Science Vol. 93 No. 3, 2010

Feeding heat treated colostrum

heifers calves receiving unheated (□) or heat-treated (o)

∃Biomin[®]

Impact on heating time and Colostrum absorption

Effect of different heating times of high-, medium-, and low-quality colostrum on immunoglobulin G absorption in dairy calves D. J. Saldana 2019

	Unheated			Н	Heated 30 min			Heated 60 min			P-value ¹		
Item	Low	Medium	High	Low	Medium	High	Low	Medium	High	Q	М	Q × M	SEM
Total protein, g/dL	5.3 ^b	5.6^{b}	6.1ª	5.3^{b}	5.6^{b}	6.3ª	5.2^{b}	5.7^{b}	6.1 ^a	< 0.01	0.7	0.8	0.1
IgG. mg/mL	19.4	18.2	21.4	13.3	22.1	25.7	21.6	26.3	27.2	0.02	0.06	0.3	3.1
AEA. ² %	37.3	26.2	20.8	32.6	39.6	25.4	47.3	48.5	28.9	< 0.01	0.01	0.2	5.1
Hematocrit, %	28.5	30.3	32.2	31.5	31.8	27.0	31.4	31.2	30.0	0.52	0.79	0.06	1.4

^{a,b}Values within a heat time with different superscripts are different (P < 0.05) after accounting for multiple comparison by Tukey's adjustment factor.

 $^{1}Q = colostrum quality (high, medium, or low); M = heat treatment minutes (0, 30, or 60).$

²Apparent efficiency of absorption, calculated as AEA = [(birth weight $\times 0.091 \times \text{serum IgG})/\text{total IgG fed} \times 100$.

The majority of proteins effected by heat treatment were involved in immunity, enzyme function

≣Biomin≡

Milk replacer fed 2x or 4x per day calves weaned at 42 days

20:20 MR 20% CP, 20% fat, fed at 1,5% of BW 26:18 MR 26% CP, 18% fat, fed at 2% of BW 18% CP starter and water offered free choice , 12 calves per treatment

Kmicikewycz et al 2013

Meta analysis of calf growth and milk yield

Studies compering preweaning calf nutrition and future milk production of the same animals WM whole milk, MR milk replacer, Na not available, DIM days in milk

Study	N	ADG of control kg	ADG of treatment kg	Milk yield of control kg	Milk respond kg	Estimated ME , Mcal/d above control	Source of nutrient
Foldager and Krohn (1994)	30	na	na	na	1,405	na	WM
Bar-Peled et al. (1997)	20	0.56	0.85	9,171	453	0.290	WM/MR
Foldager et al. (1997)	20	0.60	0.90	7,716	519	0.266	WM
Ballard et al. (2005), at 200 DIM	14	0.44	0.73	6,100	700	0.200	MR
Shamay et al. (2005)	20	0.59	0.88	10,784	981	0.270	WM/MR
Drackley et al. (2007) block 1	10	0.52	0.75	9,245	1,332	0.410	MR
Drackley et al. (2007) block 2	14	0.56	0.79	12,962	718	0.540	MR
Raeth-Knight et al. (2009)	26	0.56	0.79	12,962	718	0.540	MR
Terré et al. (2009)	30	0.80	0.90	9,888	624	0.200	MR
Morrison et al (2009)	38	0.34	0.50	6,862	0	0.160	MR
Moallem et al (2010)	23	0.73	0.80	9,150	732	0.074	WM/MR
Soberon et al (2012)	400	0.32	0.70	10,605	552	0.450	MR

∃Biomin≡

Meta –analysis of ADG and 1st lactation milk production/ preweaning ADG

- 100g/d gain during pre-weaning yield 150kg milk
- 19.6% accounted for by increased of milk intake
- 80.4% accounted for by increased grain intake
- Calf starter intake is the component of primary importance

Gelsinger et al., 2016

Starter intake in the early live

rumen pH variation at -8, -4, 0, 2, 4, 8, and 12 h relative to feeding from 1 to 6 wk after starter was available with 5% straw short cut >1 cm

SUAREZ-MENA ET AL 2016

Solid feed intake and the rumen pH

- Adaptation of the rumen pH.
- Adaptation of the liver to low rumen pH.
- Low rumen pH affect gen expression of the rumen epithelium and liver.
- Developing rumen adapts to increase acidotic pressure from calve starter fermentation.

solid feed intake and rumen pH from 1 to 6 wk after starter was available for calves fed starter containing 5% straw

∃Biomin∃

Milk v. solid feed intake in young calf

When milk is ingested, here's what happens

When starter or forage is ingested, here's what happens

Digesting track, proportional changes with age

The ruminant stomach Age when dry feed is introduced

Stomach proportions change with age

100% 14.2 90% 3.9 80% 58.3 70% 60% Abomasum 50% Omasum 74 Rumen 40% 4.17 Reticulum 30% 33.3 20% 10% 6.5 417 0% I d old calf 56 d old calf

By delaying the offering of starter for 11 days: Potentially miss out on about 1kg of starter consumption

Reticulum + rumen + omasum!

Ruminant stomach size changes with age

1 day old calf stomach inside changes too Papillae are present but they are tiny

5 cm grid

5 cm grid

∃Biomin≡

Questions for us to consider

What do papillae do? What drives papillae growth? Does this just happen on its own? Why are well-developed papillae desirable?

Papillae functions

Absorb VFA Keep microbes out

Do papillae simply grow as the calf grows?

So, calf age alone is not the driver of papillae development;

Diet has something to do with this process.

Developing rumen papillae How can we promote their growth?

In adult cattle, absorbed VFA provide the majority of energetic precursors for metabolic processes.

4 steps to developing a rumen:

- 1. Substrate availability in the rumen
- 2. Liquid in the rumen
- 3. Establishment of bacteria in the rumen
- 4. Absorptive ability of rumen tissue

Early life voluntary starter intake is low

Avg age (days) when solid feedstuff is introduced

Operation Average Age (d)

Herd Size (number of cows)

Operation Average Age (0	Op	erati	on A	verag	e Ac	e (d)
--------------------------	----	-------	------	-------	------	-----	----

Herd Size (number of cows)

	Very (few thar	small wer 1 30)	Small (30–99)		Medium (100–499)		La (500 o	rge r more)	All operations		
Diet	Avg.	Std. error	Avg.	Std. error	Avg.	Std. error	Avg.	Std. error	Avg.	Std. error	
Starter grain or other	17.6	(3.4)	10.9	(0.7)	8.0	(0.4)	6.3	(0.3)	10.8	(0.6)	

Diet	Very (fer thar	Very small (fewer than 30)		Small (30–99)		dium -499)	La (500 o	rge r more)	All	
	Avg.	Std. error	Avg.	Std. error	Avg.	Std. error	Avg.	Std. error	Avg.	Std. error
Water	15.6	(2.5)	20.0	(1.1)	15.4	(1.1)	7.8	(1.0)	17.3	(0.7)

NAHMS, 2014 Dairy

Practically, what might this mean for calves near weaning?

Weaning age of calf.

If goal is to consume 1kg of starter (as-fed) per day,

- Calf should have access to at least 3I water/d
- Water in addition to milk or milk replacer

If goal is to consume 2,5kg of starter (as-fed) per day, older heifers

Calf should have access to at least 7I water/d

Absorptive ability of rumen tissue

An analogy for importance of rumen papillae development VFA absorption occurs by 2 mains routes:

- Passive diffusion
- Facilitated transport through membrane receptors

Rumen microbial establishment

- 1. Inoculation starts during the birth process
- 2. In general a microbe can survive in the rumen if it has food
- 3. There are 2 distinct bacterial microbiomes in the rumen
 - 1. Rumen content microbiome

Naturally ahead

2. Adherent rumen tissue microbiome

Mature rumen microbe number /ml contents

- Anaerobic bacteria, 10¹¹
- Protozoa, 10⁶
- Fungi, 10⁶
- Methanogens, 10⁹
- In 3 d old dairy calves
 - Facultative bacteria, 10⁷
 - Anaerobic bacteria, 10⁹

Anderson et al., 1987

Ruminal microbe establishment

Adapted from Anderson et al., 1987

Cellulose provision to microbes

- When does this make sense?
- When does this not make sense?
- What does the NRC have to say?

Photo by Mike Dixon.

"Long hay should not be fed to calves until after weaning." (Dairy NRC, 2001)

Or at least not until ruminal pH regulates around 6.0, because cellulolytic bacteria don't like rumen pH under 6

Take home points about rumen development

- For calves, three growth phases make some physiological sense, assuming
- Minimal starter intake before 2 wk of age Weaned at 8 wk of age
- 1. Birth to 2 wk of age – Non-ruminant phase
- 2. 3 wk to 8 wk of age
 - Transition phase
- 3. 8 to 12 wk of age
 - Ruminant phase

Easiest things to address are: access to starter, water, and forage (when it makes sense)

How do egg antibodies work?

IgYs work in a similar to IgGs (colostral antibodies) in the gut but have a much greater ability per gram to bind to antigens than IgGs do.

IgYs do not cross into the bloodstream and have no effect on passive transfer.

they are not a substitute for an excellent colostrum protocol.

The IgYs bind to, and reduce, the pathogens' ability to attach to the gut lining and are passed in the manure.

Observed scour days when fed egg antibodies vs. control

*Denotes significance at p<0.05

Jackson Matschke for Progressive Dairy Published on 31 July 2020

∃Biomin∃

PX TOP3 in milk Commercial farm, Denmark

Biotronic[®] PX Top3 in milk replacer of calves

led to...

- increased growth performance
- better faecal consistency → reduced diarrhea symptoms
- reduced coughing scores and nasal discharge → healthier calves

How Biomin can help?

Levabon Rumen in calf starter 2.5-5kg/T 85% of the Butyric Acid is absorbed in the rumen wall

Figure 2. Levabon[®] Rumen E supplementation increased the three volatile fatty acids (VFAs) acetate, propionate and butyrate significantly (p<0.05) (n=18).

Average Daily Weight Gain (ADG) Germany, 2012

Levabon[®] effect on weight gain:

- Similar ADG in first 50 days
- Significant increase in ADG from Day 51 to 100 (high starch diet) +224 g/head/day (P < 0.001)
- Significant increase in ADG over whole trial

+119 g/head/day (P < 0.001)

** highly statistically significant (P < 0.001)