

Managing inflammation in dairy production: Phytogenics as a tool

Dr. Tyler Turner, Global Phytogenics Product Manager - Ruminants

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

≣Biomin≣

Digestarom[®] PFA solutions

What are phytogenic feed additives? How applied in animal nutrition?

≣Biomin≣

The complexity of nature

Primary metabolites

Nutritive parameters Necessary for plant growth

- Starch
- Sugar
- Oils

- CHOs
- Fiber
- Proteins/amino acids
- Vitamins/minerals

Medicago sativa (alfalfa/lucerne) Source: Herbco.com Secondary metabolites Defense and dispersion Pharmacolgical effects

- Odor (+/-)
- Taste (+/-)
- Pigments (+/-)
- Toxic deterents
- Bacteriostatic

Phytochemicals basis for phytogenic feed additives

Phytochemical:

- Refers to a variety of **plant-derived compounds with therapeutic activities** such as anticarcinogenic, antimutagenic, antiinflammatory and antioxidant properties (McGuire, 2011)
- Diverse structure relates to bioreceptor interaction potential
- Phytochemical composition varies by material, e.g. bark or leaves, or roots
 - Some compounds can by synthesised

Phytogenic feed additives (PFA) or botanicals:

- Substances of plant origin added to animal diets at recommended levels with the aim of improving animal wellbeing and performance
- Include whole plants, herbs/spice powders, volatile/non-volatile extracts, specific EO compounds

Natural variation in bioactive compounds

- World region/climate
- Season
- Environmental factors
 - Light
 - Temperature
 - Nutrients
 - Soil
 - Water
 - Pathogens
 - ..
- Chemotype
- Development stage
- Plant parts used

• ...

Institut für nachhaltige Techniken und Systeme

Oregano – Essential oil content and plant development Results from 2005

≣Biomin≣

Specification of components

• Feed regulations

- Commission Regulation (EU) No 68/2013
- Regulation (EC) No 1831/2003
- Regulation (EC) No 183/2005
- Directive 2002/32/EC of the European Parliament and of the Council
- FDA (US) GRAS status code of federal regulations (CFR)
- ...
- Quality management requirements
 - GMP+
 - FAMI-QS
 - Pastus+
 - ...
- Botanical identity and origin
 - Sensory properties
 - Chemical properties
 - Active ingredients
 - Essential oil
 - Total phenols
 - ...
- Physical properties
 - Density
 - Viscosity
 - Optical rotation
 - Melting point
 - ...

≣Biomin≣

What about challenges in dairy production?

Biomin

Understand the underlying cause, not the symptoms A holistic view

- o Invisible/Visible Whole/Part
- Comprehensive review of Yang et al. (2015)

Phytogenic compounds as alternatives to in-feed antibiotics: potentials and challenges in application. *Pathogens*, 4:137–156

Microbiota: antimicrobial action, reduced VFA and ammonia, no antibiotic resistance

Digestion: stimulation of enzyme activity, enhanced digestibility

Gut-brain: improved feed palatability and intake (chemosensory system)

Immunity: anti-inflammatory effects, oxidative stress defense, mucus secretion

"The **Way** we see the **things**"

"The **Way** we should see the **things**"

≣Biomin≣

Minimimum requirements ≠ optimum performance

Naturally ahead

≣Biomi<u>n</u>≣

Inflammation in new perspective

Challenges encountered throughout lactation

≣Biomin≣

Metabolic disease prevalence

Metabolic challenges most prevalent in first 30 d post-calving

	Disease	Clinical & Sub-clinical*
	Ketosis	27% ± 9%
	Metritis	25% ± 11%
>	Acidosis	26% ± 20%
→	Mastitis	8% ± 8%
→	Lameness	5% ± 3%

SCK

	Risk factor
Clinical ketosis	3 to 6x
LDA	2.6 to 8x
Metritis	1 to 5.8x
Milk Yield @ 160DIM	-1.5 to 2.4 kg/d
Delayed breeding	16 days

*Suthar et al. 2013 & Kleen et al. 2013

Costs of metabolic disorder

- Direct treatment costs
- Indirect losses to milk production, depending on severity
- Increased susceptibility to multiple diseases
- Delayed fertility, widening calving intervals

Naturally ahead

Leblanc 2010

Finding balance during critical phase

Transition disorders begin before calving

- DMI drives NEFA mobilisation
 - Catabolic reaction
 - Insulin resistance
 - Microbial disruption
 - Low microbial synthesis
 - Reduced rumen function
 - Low glucose circulation

Fat mobilization enhances inflammatory response

Body fat mobilization = Suppressed immune system

Contreras et al. 2010

Naturally ahead

≣Biomin[®]

Coping capacity determines inflammation threshold

Suppressed immune system = \uparrow Inflammatory response

≣Biomin[®]

Digestarom® Dairy

Role of phytogenic compounds in ruminant production

Phytogenics in animal production

Digestarom[®] product line is the solution to **improve nutrient availability** by **reducing sub-inflammatory processes**, modulating the gut microbiota and ensuring gut integrity for **better animals performance**

Gut health a complex interaction of multiple factors

Oxidative stress and inflammation – a viscious circle

 \uparrow Stressors = \downarrow Efficiency

Digestarom® operates on various steps of the vicious cycle to reduce the impact of oxidative stress and inflammation on animal performance

Adapted from: Mostofa et al., 2017

Metabolism and role of antioxidants

- Reactive oxygen species (ROS) generation
 - normal metabolic function in mitochondria (ATP formation)
 - oxidative burst defense by macrophages (anti-pathogen)
 - stress elevates ROS formation (cell metabolism)
 - damage occures when ROS formation exceeds coping capacity
 - Superoxide (O₂-), hydrogen peroxide (H₂O₂), hydroxyl radical (HO)
 - Reactions can form additional reactive subclasses
- Many vitamins and minerals serve complementary antioxidant functions
 - Se, Zn, Mn, Cu, vit C, vit E, β-carotene
 - scavaging free radicals (Vit C, Vit E, β-carotene, phytophenols)
 - block lipid peroxidation of phospholipids (e.g. Vit E)
 - degrading hydrogen peroxide to H₂O (e.g. enzymes)

Phytochemicals as antioxidants

- Over 8000 known structural phytochemical variants
 - Antioxidant activity influenced by structure
 - Aromatic rings, hydroxyl moieties
 - Highly variable depending on region, climatic conditions and genetics (Chrysargyris et al. 2020)
 - Synergy enhances activity by 20-30% over single compounds (Hashemazadeh-Cigari et al. 2014)
 - Direct activity linked to superoxide scavaging activity
 - Indirect action via Nrf2 regulation (antioxidant response regulator)
 - Upregulates numerous enzyme defense responses, eg GST, CAT, SOD

Nrf2-system – Master regulator of cell protection

The Nrf2-system

- Nrf2 = <u>N</u>uclear factor
 E2-<u>r</u>elated <u>F</u>actor <u>2</u>
- The Nrf2-system is one of the major cellular defense mechanisms against oxidative & xenobiotic stresses in the intestinal tract.
- The Nrf2-system contributes to protection against various pathologies, including inflammation, liver toxicity, carcinogenesis & respiratory distress.

≣Biomin≣

Enhancing expression of genes related to Nrf-2 (cell protection) with Digestarom[®]

In vitro test: Caco-2 cells

■ Control ■ Digestarom®

Source: University of Gießen, unpublished data

Impact of inflammation on performance

Inflammation - protective mechanism to coping with stressors and harmful environmental stimuli

*Milder but persistent response of the immune system

More nutrients and more energy required when subclinical inflammation is present

Naturally ahead

≣Biomin≣

Reducing expression of genes related to NF-κB (inflammatory response) with Digestarom[®]

In vitro test : Caco-2

- 1. without TNFα (Negative control)
- 2. with 10 ng/ml of TNFα (Positive control)
- 3. with 10 ng/ml of TNF α + Digestarom[®]

Source: University of Gießen, unpublished data

Following through the challenges

≣Biomin≣

Factors influencing colostrum quality

Detrimental factors

- Short dry period
- Inadequate nutrition
- Environmental stress
- Pen stress

Positive factors

- Age of dam
- Vaccinations
- Bolster stress coping capacity?

	Lactation				
Item	1	2	3	4+	SEM
n² 🔹	172	130	94	93	
IgG, mg/mL	83.5°	92.9°	107.4ª	113.3ª	3.8
IgG, g	532.8ª	579.0°C	619.6 ^{ab}	690.2ª	28.2
Volume,3 L	6.2	6.1	6.8	6.5	0.5
Calving ease4	1.6	1.7	1.6	2.1	0.2

Kehoe et al. 2011

Experimental design

Commercial trial evaluating influence of Digestarom® Dairy on colostrum quality

Location: Commercial dairy, ~ 2600 cows, California, USA Design: 2 replicates per treatment, on/off design, no overlap of treatments Animals: Close-up groups fed 30 day pre-calving, multiparous only

- Control, n = 530 cows, basal dry cow ration
- Treatment, n = 457 cows, basal dry cow ration, 2 g/cow/d Digestarom[®] Dairy

Data:

- Brix % value recorded on 1st milking colostrum
 - Indicator of IgG content, where >21% Brix = "Good quality"
- Colostrum yield recorded
- IgG concentration (mg/ml) = 6.0052 x Brix % 49.292
- Total IgG (g) calculated using colostrum density estimate, 1.043 kg/m³
- Statistical analyses: GLIMMIX procedure of SAS (Cary, NC, USA)
 - Values in figures reported as least square means

Digestarom[®] Dairy enhances herd colostrum quality

≣Biomin≣

Digestarom[®] Dairy delivers more IgG/L

Naturally ahead

≣Biomin≣

Transition success with Digestarom[®] Dairy

FCM, <60 DIM
 P<0.0001
 45,58
 45,50
 45,50
 44,50
 44,22
 44,0
 43,5
 Control
 Digestarom
 Inflammation
 Glucose supply
 Milk yield
 Baumgard 2017

Transition success with Digestarom[®] Dairy

Fresh cow <30 day, n=75

"During transition, circulating glucose is prioritized to the noninsulin-dependent glucose transporters, which are only expressed on immune cells and the mammary gland" Lopreiato et al. 2020

≣Biomin≣

Link between glucose and fertility

Glucose as indicator of 1st AI success

Garveric et al., 2013

≣Biomin≣

Improving fertility has significant economic impact

Metabolic diseases delaying ovulation

Preventative nutrition to manage stress

≣Biomin≣

How phytogenic feed additives help throughout lactation

After peak, can only maintain persistancy Healthy transition increases peak lactation

Sub-acute rumen acidosis can occur anytime

≣Biomin[®]

Performance starts with rumen stability

≣Biomin≡

Digestrom[®] Dairy reduces SARA duration

Naturally ahead

≣Biomin[®]

vetmeduni

vienr

Positive influence on rumen motility

Higher performance = rumen challenge:

- More NFC
- High SARA risk
- Potential rumen pH rollercoaster
- Inflammation catalysts

Parameter	Digestarom®	Levabon®
Feed bunk		
Intake, DM	1 7%	1 20%
Eating time	1 5%	1 31%
Chewing activity		
Total chewing (min/day)	1 33 %	1 31%
Ruminating		
Ruminating (min/day)	1 55 %	1 30%
Boli (Number/day)	1 50 %	1 25%
Ruminal pH		
Time of pH < 6.0 (min)		

Kröger et al. 2017

vetmeduni vienna

Digestarom® Dairy modulates microbiota

- Rumen microbiota highly diverse
 - Substrate flexibility
 - Robust recovery
 - Little understood
- SARA shifts to low pH thriving spp.
 - Gram –ve amyolytic
- Digestarom[®] Dairy maintains diversity
 - Faster recovery
 - More rumen efficient
 - Stimulate butyrate producing spp.
 - Enhance VFA absorption

	Taxonomic classification according		Ph	ase 1	
ΟΤυ	to SILVA and NCBI best BLASTn hit			Digestarom®	
Number	≥ 97% identity	Identity	CON	Dairy	
ΟΤU_6	Ruminococcaceae (f)	12		**	
OTU_14	Syntrophococcus (g)	100		**	
OTU_17	Ruminococcaceae (f)	97		**	
OTU_21	Prevotella ruminicola (s)	100		**	
OTU_23	Ruminococcus flavefaciens (s)	99			
OTU_26	Saccharofermentants (g)	100			
OTU_31	Ruminococcaceae (f)	97		**	Relative abundance %
OTU_48	Ruminococcus (g)	97			≥ 2.0
ОТU_50	Prevotella ruminicola (s)	99		**	1.0 - 2.0
OTU_52	Roseburia intestinalis (s)	97			0.5 - 1.0
OTU_59	Shuttleworthia (g)	97		**	0.2 - 0.5
ОТU_60	Ruminococcaceae (f)	97		**	<0.2
OTU_76	Prevotella (g)	99		**	\$\$ D <0.0
OTU_95	Moryella indoligenes (s)	96		**	** P < 0.01
ОТU_99	Olsenella (g)	99		**	
OTU_100	Eubacterium pyrubativorans (s)	99		**	

** *P*<0.01

Neubauer et al., 2018

Modulating inflammatory biogenic amines

Effects of Digestarom[®] Dairy on rumen biogenic amines

Histamine

- Acute inflammatory response
- Role in the pathology of laminitis

Methylamine

- Degraded toxic metabolites and absorbed
- Spermidine, Spermine
- Cause oxidative stress

Biogenic amines	CON	Dig-Dairy
Methylamine	43.7	36.5 🗸
Isopropylamine	20.7	14.9
Pyrrolidine	16.7	10.3 🗸
Putrescine	37.5	29.9
Histamine	21.6	7.42 ↓↓
Tyramine	2.00	1.21
Spermindine	19.8	13.9 🗸
Spermine	1.97	0.902 🗸

Adapted from Humer et al. 2018

Digestarom[®] Dairy modulates VFA

Benefits of more neutral pH

- More microbial synthesis
 - \uparrow NH₃-N capture
 - \uparrow VFA production
 - Higher A+B/P
- Protozoa maintained
 - \uparrow Archaea (CH₄, fiber digestion)
 - Starch digestion slowed

	Control	Digestarom® Dairy
Total SCFA, mM	118.8	124.4
% total SCFA		
Acetate	54.7	55.9
Propionate	23.8	21
Butyrate	13	16
A+B/P	2.8	3.4

23% more butyrate 36% less lactic acid 34% less NH₃-N

Neubauer et al., 2018

Improving efficiency and income over feed cost

≣Biomin≡

Herd Performance – Processor report

n=~900 lactating cows

Naturally ahead

≣Biomin≡

Why persistency a benchmark for herd health

- Stress challenges shorten lactation
 - Nutrition
 - Environment
 - Group changes
- Glucose supply limiting
- Secretion cells "shut down"
 - No reactivation
- Increase risk of high BCS
 - Group uniformity

≣Biomin[®]

Digestarom[®] Dairy enhances persistency, mitigates stress challenges

Implications

Digestarom[®] Dairy has positive effects throughout lactation:

- More ECM, from yield and solids, enhances returns
- 3% improved feed efficiency, better IOFC
- Positive influence on fresh cow DMI and milk production
- Managing stressors holding back production potential
 - Inflammatory stress
 - Oxidative stress
- Higher quality colostrum

Questions and Discussion

≣Biomin≣