

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

The prospect of UAVs and smart farming applications in Estonia

Kai-Yun Li

Junior Research Fellow in Environmental Sciences and Applied Biology
Estonian University of Life Sciences.

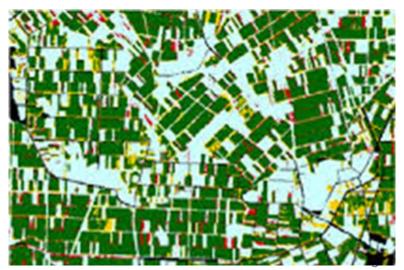
Contents

- The concept of UAS used in sustainable agriculture
- UAV in Precision Agriculture
- UAV in Crop Phenotyping
- Our Current Studies in Estonia

About me

I worked in Ministry of Agriculture in Taiwan.
My study is focus on Precision agriculture management.

The first focus of work is agricultural farming and fallow subsidies.



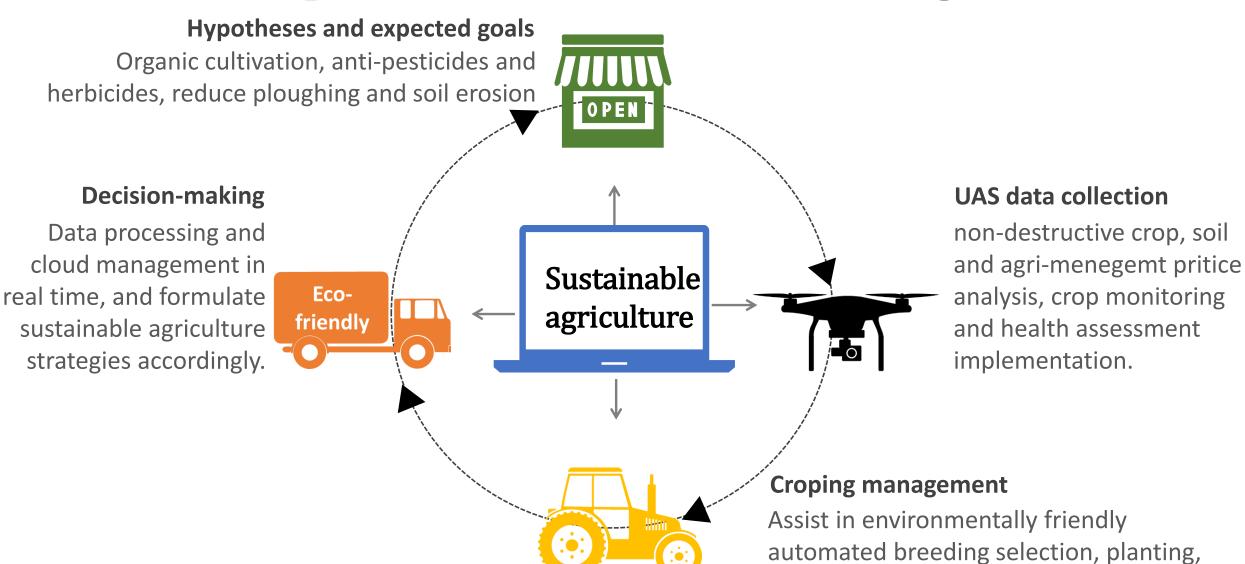
About me

The second focus is on agricultural natural disasters.

Illegal mountain development monitoring

FORMOSAT-2 Pass twice daily over Taiwan

The concept of UAS used in sustainable agriculture

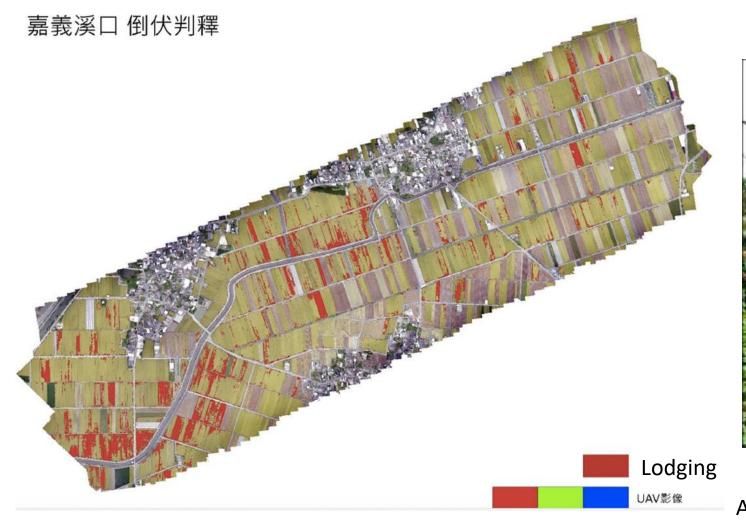


plowing methods and irrigation operations.

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

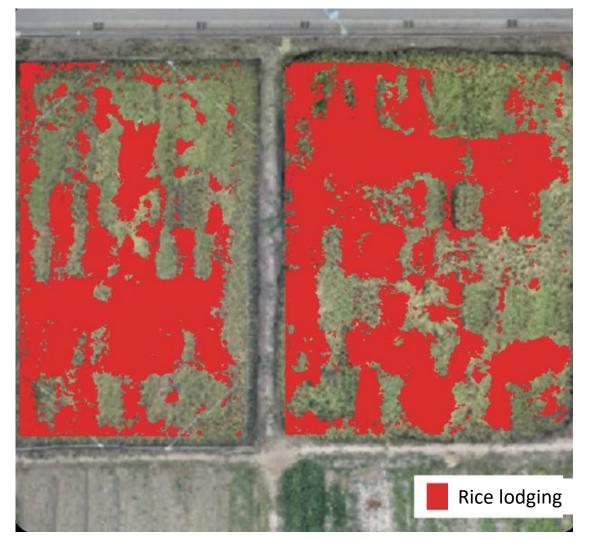
The application of UAV in Precision Agriculture

Banana Lodging Detection - Disaster Subsidy



Agriculture Department of Chiayi County Government

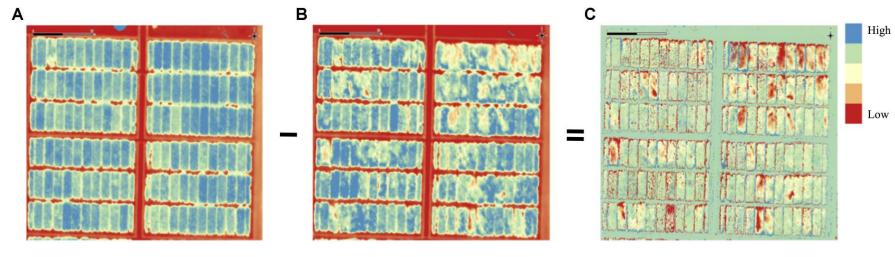
Damage Assessment

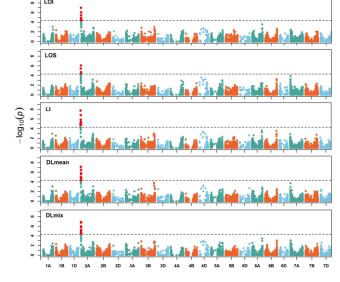


Agricultural disaster assessment and subsidies

Al Technology on UAV Images in Smart Agriculture, Ming-Der Yang

High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat





Processing of pre- and post-lodging digital elevation models (DEM) to obtain differential DEM of lodging. Post-lodging DEM is subtracted from pre-lodging DEM to generate a differential DEM of lodging. Panels are (A) pre-lodging, (B) post-lodging, and (C) differential DEM.

Manhattan plot of genomewide associations.

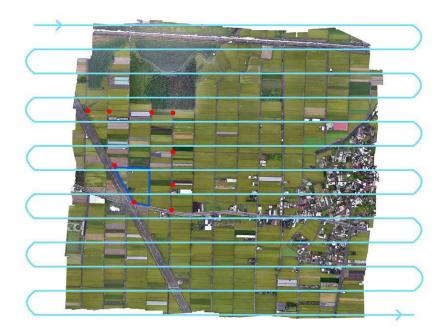
(Singh, Daljit, et al. 2019)

Crop Spraying

Thanks to the affordability of distance-measuring technology, drones can be fitted with ultrasonic echoing and lasers. This allows them to adjust their location and altitude across any terrain and prevent accidents while spraying a crop. Crops are evenly sprayed despite location without being overly saturated or missed entirely. The reliability of the drones also results in quick ground overage, completing a crop spraying up to five times faster than traditional means.

Spraying management in Taiwan

- -Pesticide application license
- -UAV flight license
- -Upload flight path everytime after spraying



Flight restricted area in Estonia

Military operations area

Nature reserve-Lahemaa

Tallinn Airport

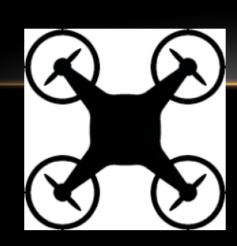
Urban area- Tartu

Drone Irrigation

Autonomous soil moisture mapping system and microwave sensing technology on drones

Engineers from Australian Monash University in Melbourne are using autonomous drone technology to improve irrigation practices. Eventually the drone technology will be used to reduce the use of water and optimise yield.

Planting Trees



Orthographic mosaic image

DSM(Digital Surface Model)

Point cloud

Near-infrared image

Multi-spectral image

Hyperspectral image

Thermal image

AI identification Model

Leaf age

Rice height

Dry weight

Fresh weight

Number of deliveries

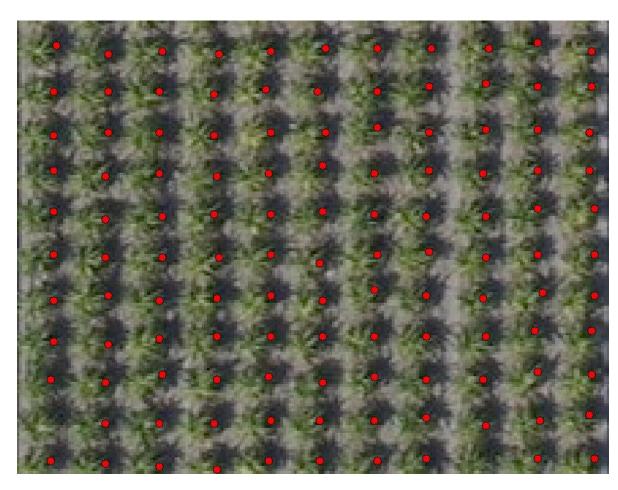
Leaf color

Chlorophyll index

Rice health

Rice production

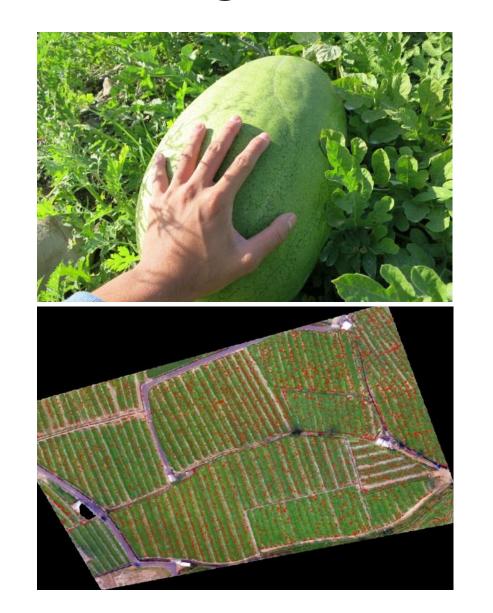
Counting: Dragon fruit - Production estimate



Accuracy: 96.3% (642/648)

Al Technology on UAV Images in Smart Agriculture, Ming-Der Yang

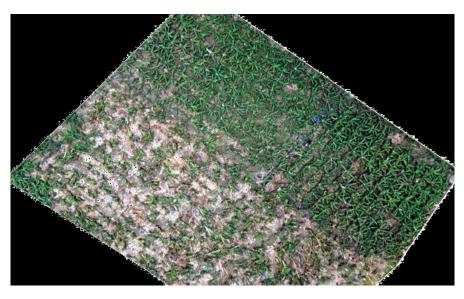
Counting: Watermelon- Production estimate

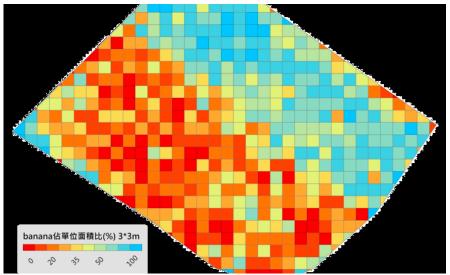


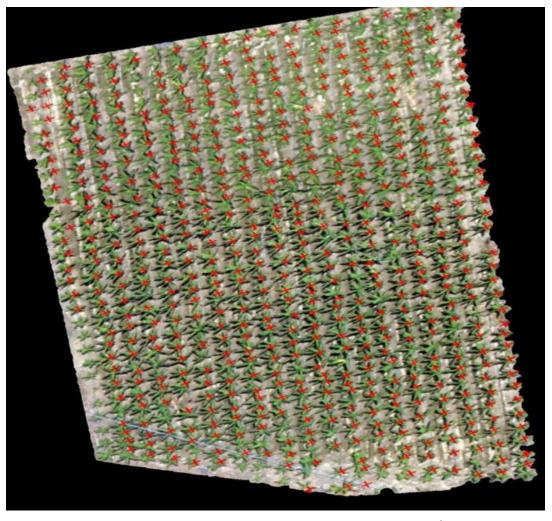
Accuracy: 88.57%

Al Technology on UAV Images in Smart Agriculture, Ming-Der Yang

Counting: Banana- Production estimate

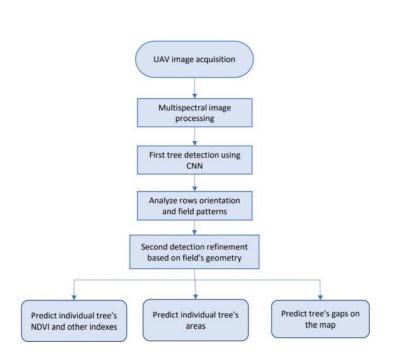






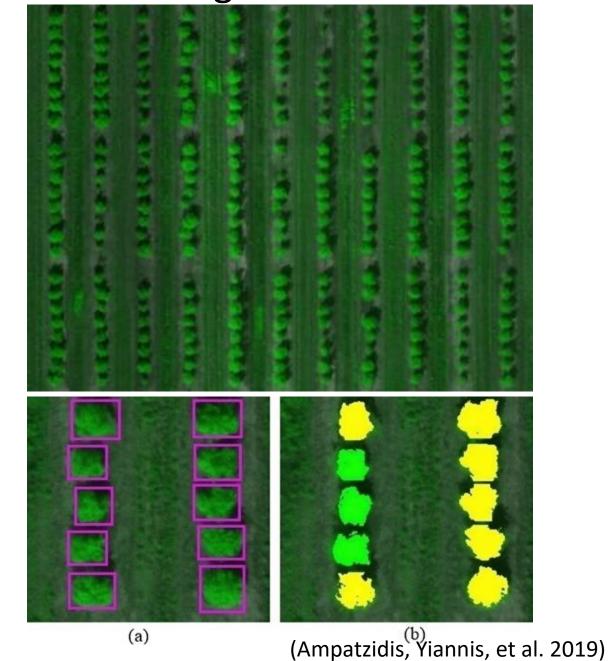
Accuracy: 94.68% (534/564)
Al Technology on UAV Images in Smart Agriculture, Ming-Der Yang

Citrus tree count utilizing UAV and artificial intelligence



Deep convolutional neural network (CNN)

Detect and count citrus trees with high precision (99.9%) in an orchard of 4931 trees and estimate tree canopy size with a high correlation (R = 0.84)



QR code- Traceability System in Taiwan

檢視履歷資訊

追溯號碼:0000000

農民經營業者:000

產品名稱:池上米(3.5KG/包)

產地名稱:00縣00市00路

碾製日期:0000年00月00日

UAV影像:

病蟲:瘤野螟、二化螟蟲

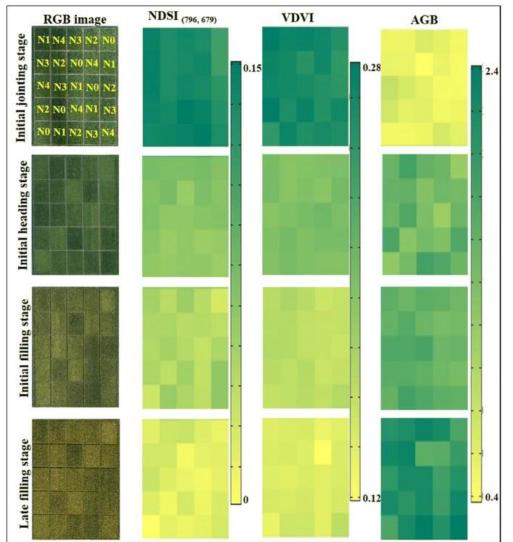
病害:稻熱病、紋枯病

災損:有,20%

施用農藥:聯速利、加因素

At food stage, a complete life cycle of crops can be retrieved from the traceability system such as agricultural practices, UAV images, and associated analyses.

Dynamic monitoring



Vegetation stage		Reproductive stage		Ripening stage	
Transplanting	Tillering	Panicle initiation	Flowering	Milky and Dough	Harvest maturity
20 days	15–20 days	15–20 days	30 days	30 days	
*	*				

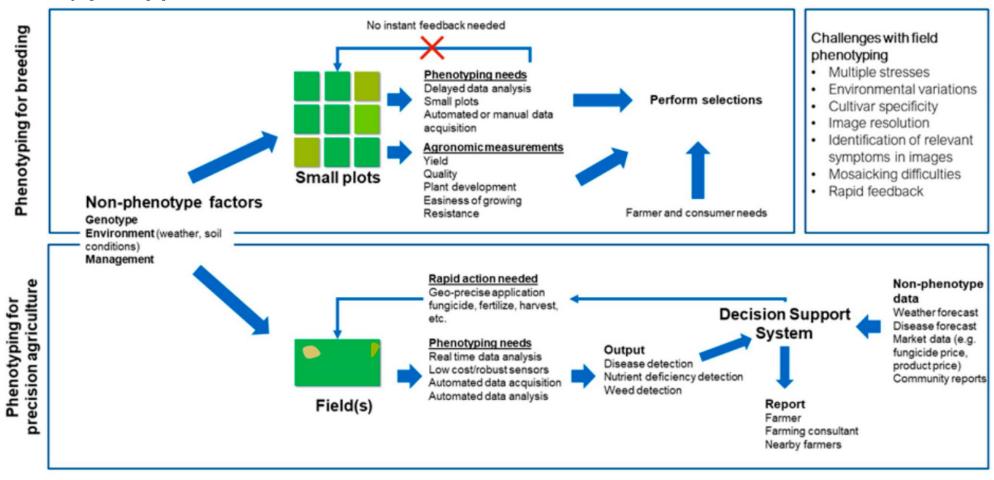
(Prathumchai, Kulapramote, et al. 2019

Spatial and temporal variations in RGB, NDSI, VDVI and AGB of rice. NDSI, VDVI, AGB in different rice stage (Cen, Haiyan, et al., 2019)

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

The application of UAV in Crop Phenotyping

The UAV application in Precision Agriculture and plant phenotyping



An overview of differences in the phenotyping needs and subsequent actions needed for plant breeding and precision agriculture.

(Chawade, Aakash, et al. 2019)

What is plant Phenotyping?

From laboratory greenhouse to real environment

Plant Genotype (G) Environment (E)

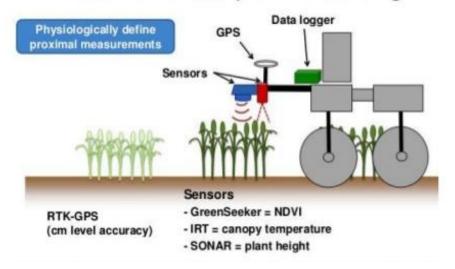
Phenotyping

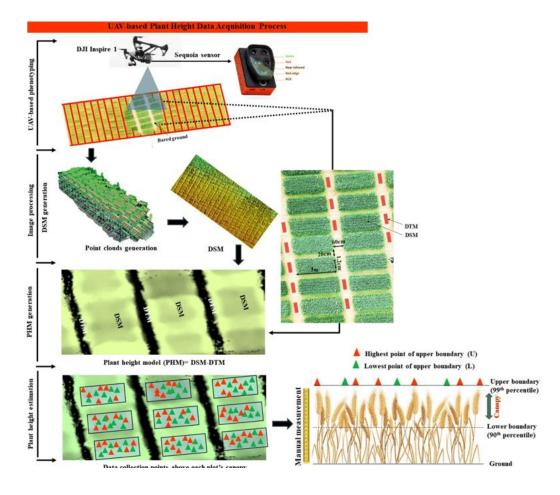
Analyze gene-environment ($G \times E$) interactions and model phenotypic responses.

Ground-based Small-scale phenotyping system

UAV-based phenotyping system

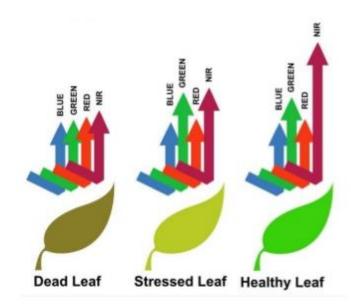
HTP: "Geo-referenced proximal sensing"

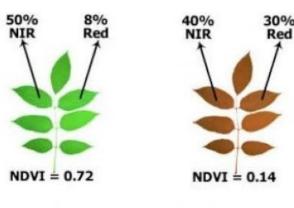


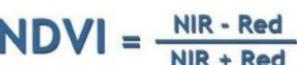


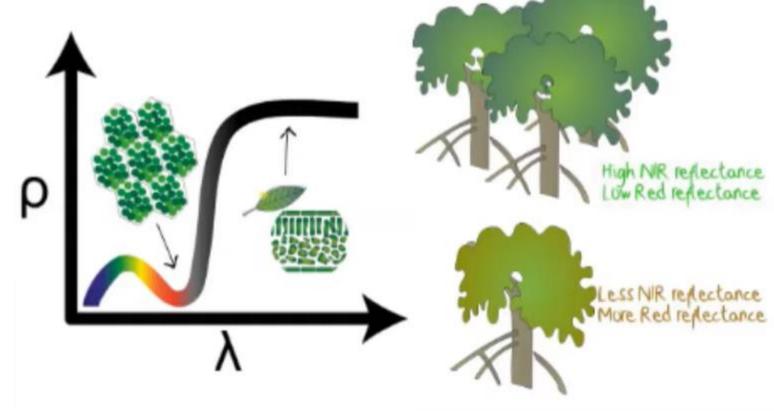
Cost-efficient and non-destructive. Utilized across a wide range of areas such as crop breeding, agricultural decision-making, and crop yield prediction, etc.

Vegetation index









UAV application in Estimating Nitrogen Status of Turfgrasses

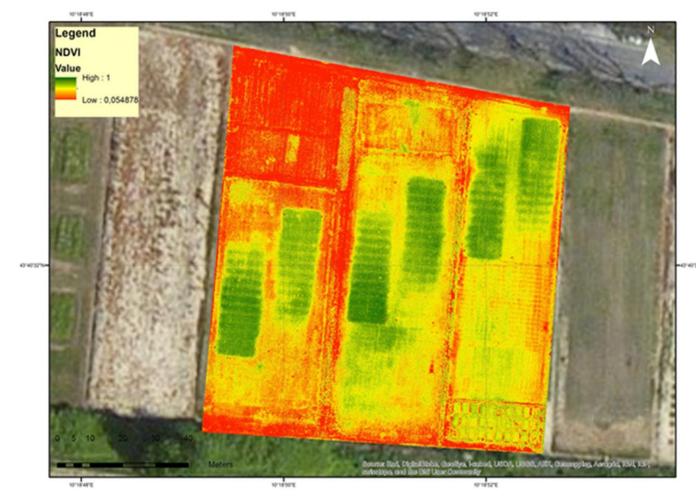
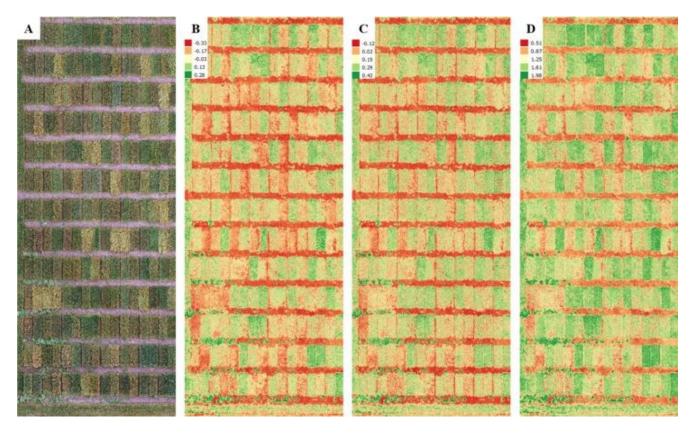


Figure 1. The NDVI image of the turfgrass fields

Valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits.

UAV application in winter wheat leaf rust disease detection



UAV obtained orthomosaic and vegetation indices maps. (A) RGB orthomosaic obtained on April 14, 2017, (B) Normalized Difference Index (NDI), (C) Green Leaf Index (GLI), and (D) Green Index (GI).

(Bhandari, Mahendra, et al. 2020)

Deep learning

Most background pixels (99.8%) are correctly classified from the confusion matrix.

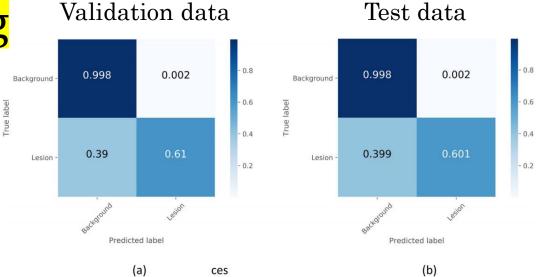


Fig. 7. Confusion matrix in the validation dataset (a) and in the test dataset (b).

Most lesions, marked as the red areas in the images, can be correctly segmented.

Fig. 8. Examples of sub-image predictions (512 × 512) in the test dataset (row #1: raw sub-images, row #2: ground truth, row #3: predicted images). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Junfeng Gao a,*, Jesper Cairo Westergaard b, Ea Høegh Riis Sundmark c, Merethe Bagge c, Erland Liljeroth d, Erik Alexandersson d,*

False positives in a test image

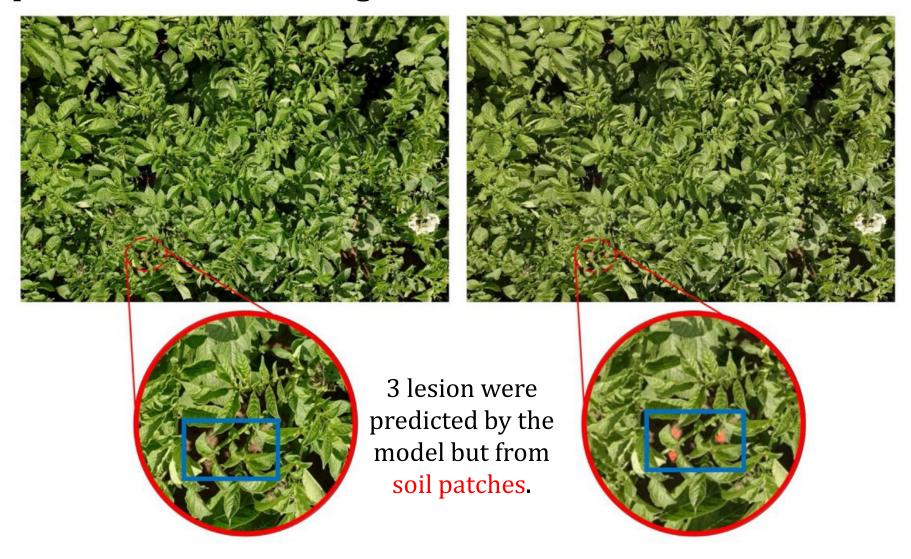


Fig. 10. False positives in a test image (5472×3648).

UAV application of Weed Seedling Detection in sunflower cropping

-site-specific weed management operations

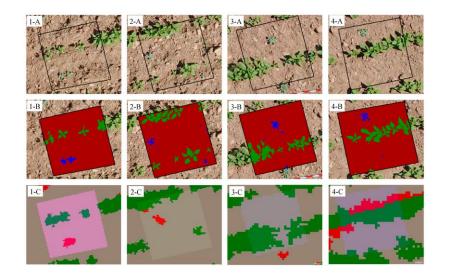
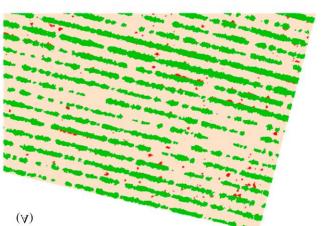


Figure 1. Image classification performed by the OBIA algorithm.



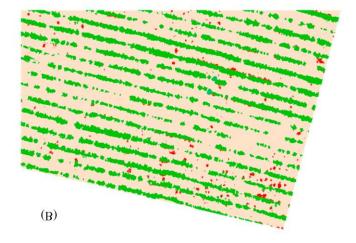
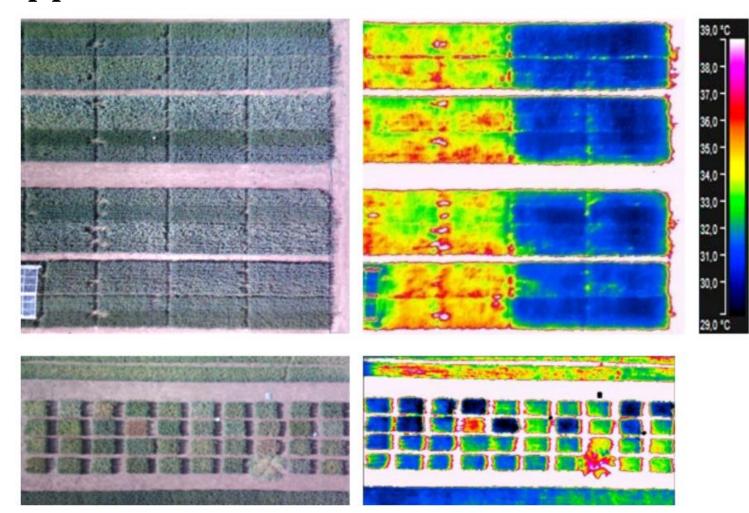


Figure 2. Image classified in weeds (red), sunflower crop rows (green) and bare soil (brown) using an UAV flying at 40 m altitude with: (A) visible-light camera (ExG index); and (B) multispectral camera (NDVI index).

Application in Detection of Water Stress in Cereals



During droughts, plants close their stomata, and the vital transpiration process that cools vegetation slows.

Crop water management

Drought indicator

Põllumajandus- ja keskkonnainstituut Institute of Agricultural and Environmental Sciences

Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

Our study in Estonia

Crop research center in Estonia, study area

Estonian Crop Research Institute (ECRI) Tallinn Kuusik Jõgeva Viljand

Breeding and crop phenotyping center. Seed Bank

Crop Variety performance test center

Goals- For environmental tests that have become crop

One type of drone we use SenseFly eBee plus and X Fixed Wing

Drone

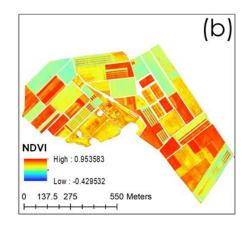
SEQUOIA- Multispectral Camera

S.O.D.A-RGB Camera

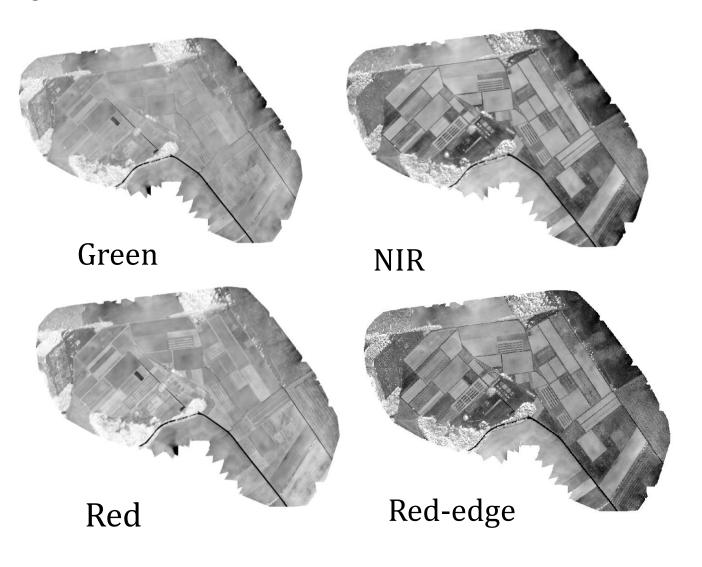
Thermal Mapping Camera

Multispectral camera

SEQUOIA- Multispectral Sensor



Normalized Difference Vegetation Index (NDVI) in Kuusiku

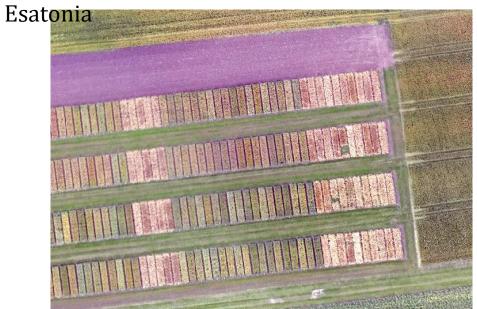


Grayscale reflection images of Green, Red, NIR, Red-edge in Kuusiku

S.O.D.A. RGB camera

Point cloud and 3D modelling, Jõgeva,

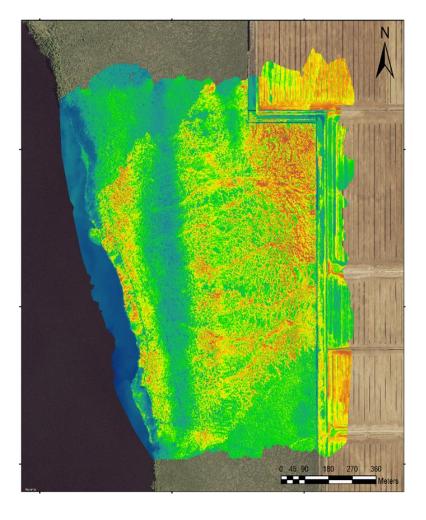
Forest RGB imagery from Lahemaa National Park,



Farmland RGB imagery from Kuusiku, Estonia

Thermal camera

Surface Temperature



Some of our UAV research in agriculture

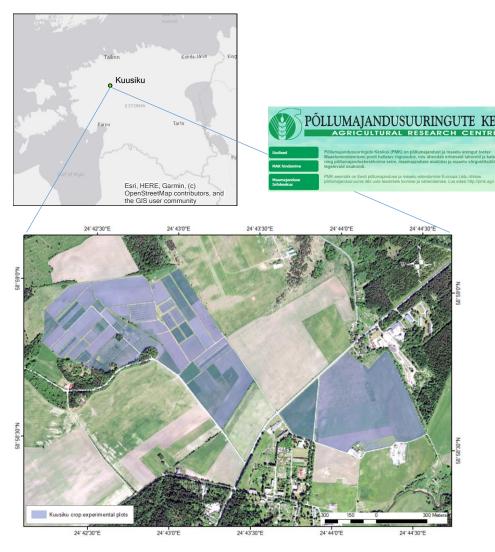


Fig 1. The total research area covers 103.7 ha with 45 different crop types.

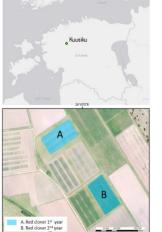
Fig 2. Orthomosaic photo of the study area (by

Fig 3. Wheat experimental field

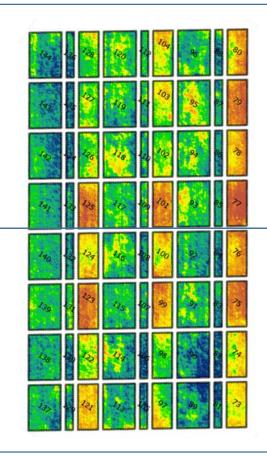
Fig 4. The eBee takes off

Red Clover-grass Mixture Yield Estimation from UAV and Machine Learning

Techniques

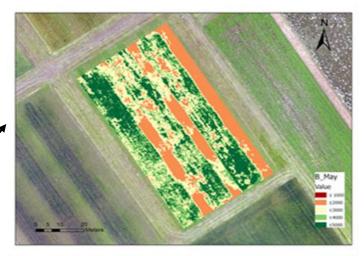


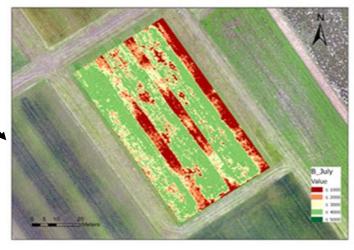
Training site



Predicting site

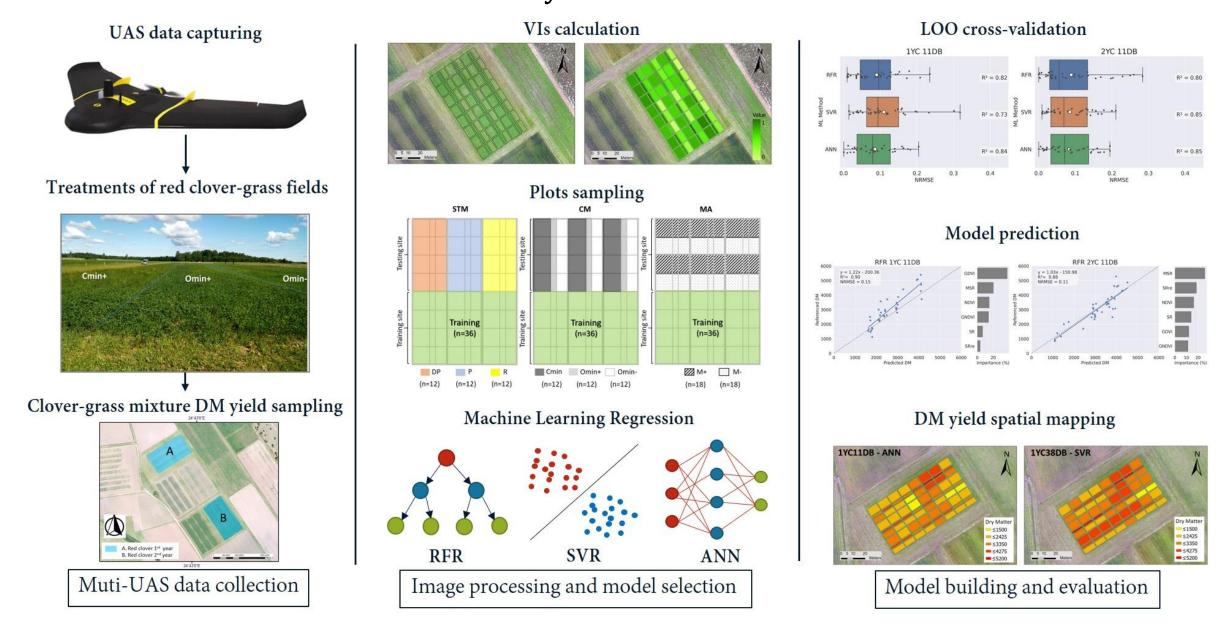
- In Kuusiku agricultural center



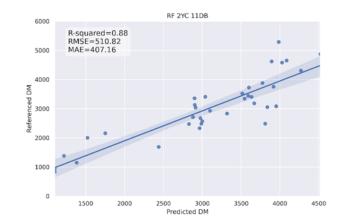


The Random Forest dry matter prediction models from Vegetation indices in raster level

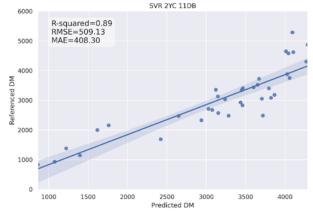
My first experiment- Traditional Machine Learning Techniques for Red Clover-grass Mixture Yield Estimation Under Variety Performance Trials.



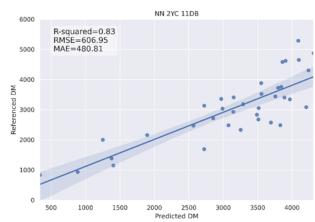
Random forest (RF)



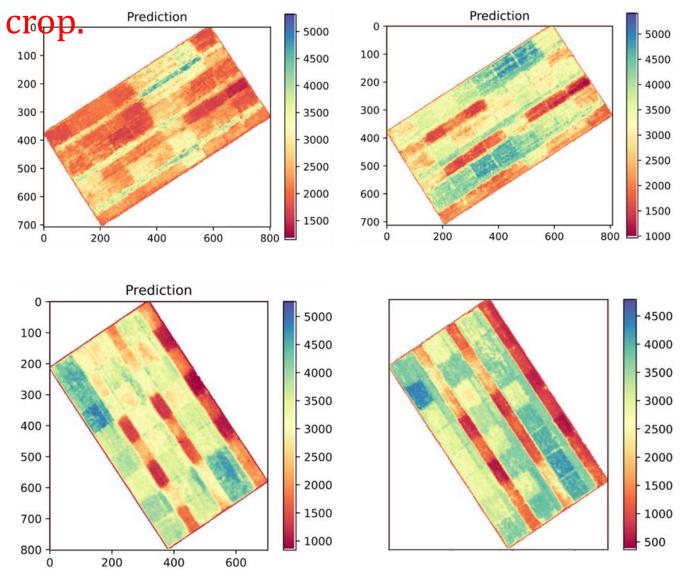
Support vector regression (SVR)



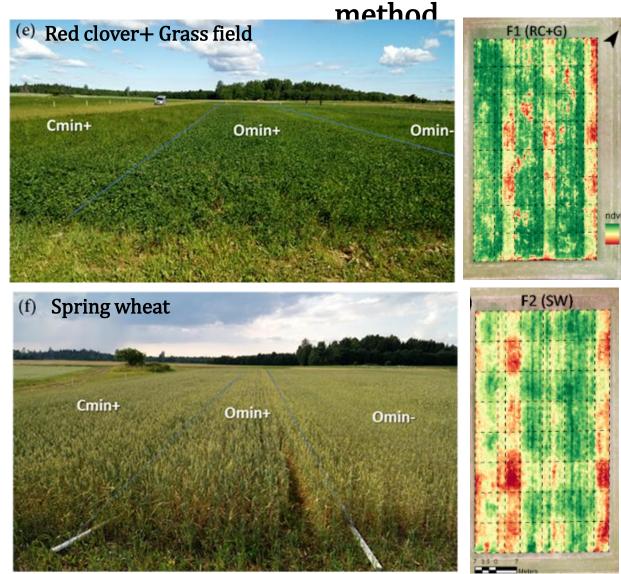
Neural Network (NN)



It was promising, we can predict the highprecision yield at the early stage of forage



AutoML Identifying the cultivation



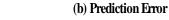
Cmin: conventional farming

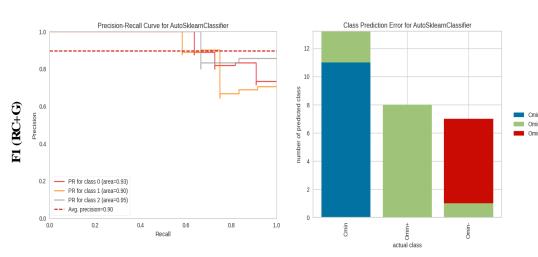
Omin+: organic farming with mineral fertilizer

Omin-: and organic farming without mineral fertilizer

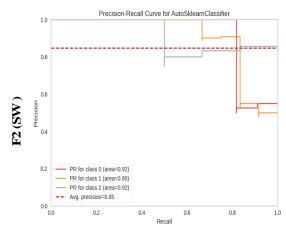
Average precision: 0.90

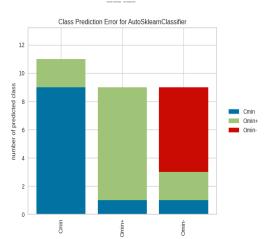
(a) Precision-recall





Average precision: 0.85





Jõgeva breeding centre of the Estonian Crop Research Institute

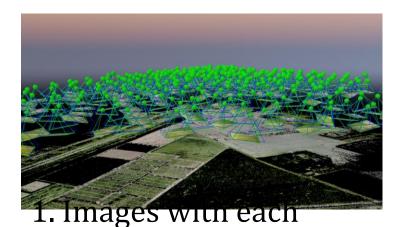
 $1*9 \ m^2 \ plot$ for advanced breeding material yield

1*3m² plot for F5 generation breeding material

1*1m² plot F1-F4, first 4 years breeding material

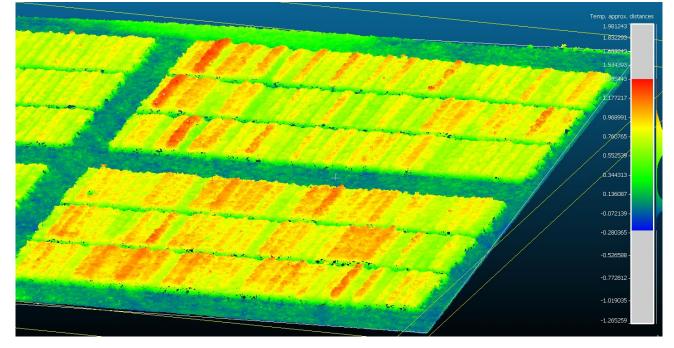
04/20/2021 Jogeva Breed Centre with P4 DJI-RGB

UAS application in wheat phenotyping-SfM



- Jõgeva Plant Breeding Institutereeding selection

3D models and real-time monitoring for wheat selection

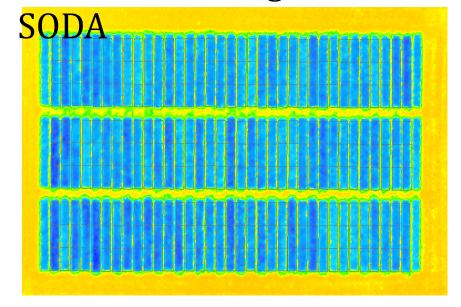


2. Create point cloud 3D mapping

3. Canopy Height Model (CHM)

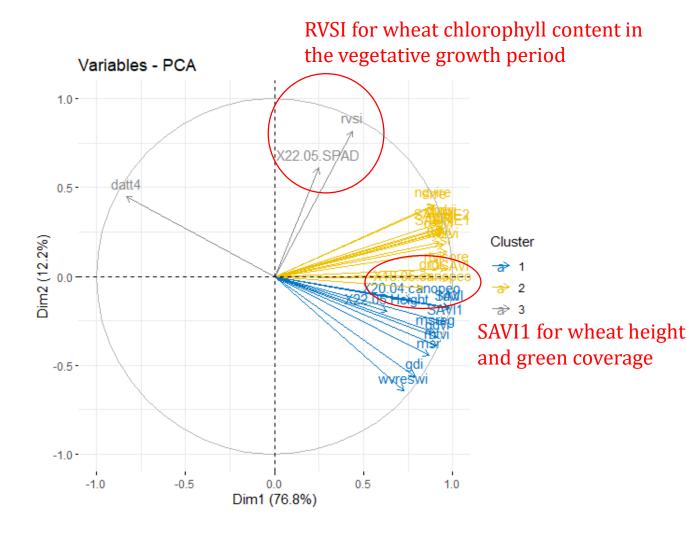


Wheat RGB image from



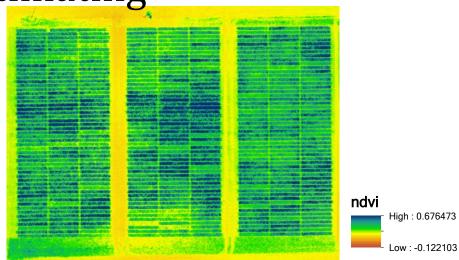
Wheat SAVI1(Vagetation index)

PCA and kmeans clustering for wheat phynotypin

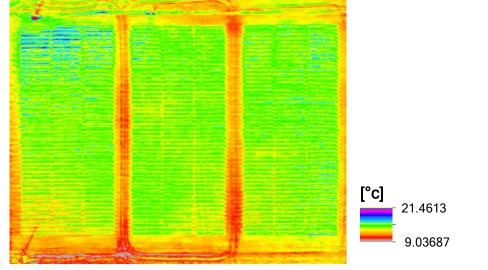


UAS application in Wheat Freeze Restriction and Recovery

Estimating



The normalized difference vegetation index (NDVI)

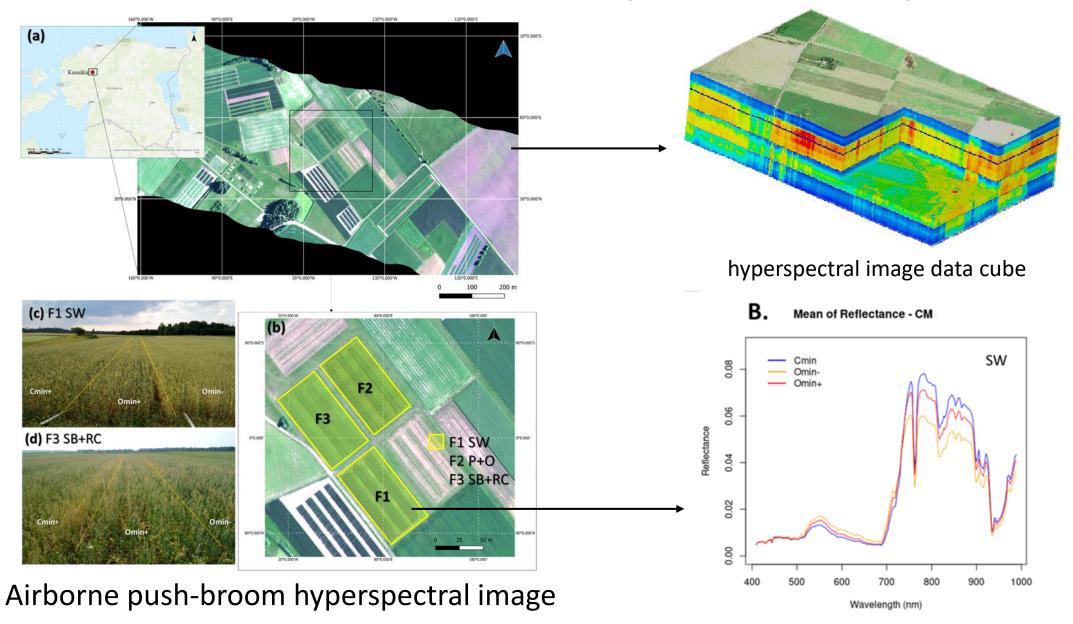


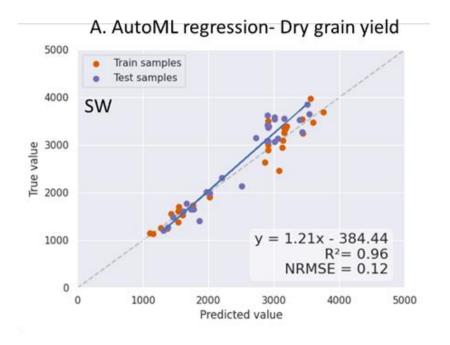
Thermal image

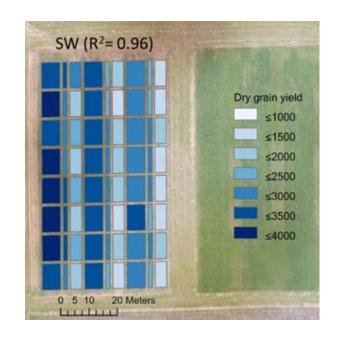
Freeze damage on winter wheat

quadrat was used to study the degree of recovery and green canopy cover

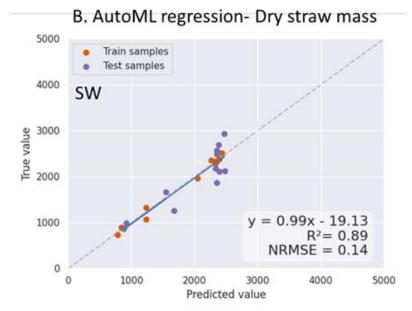
AutoML applied to hyperspectral analysis

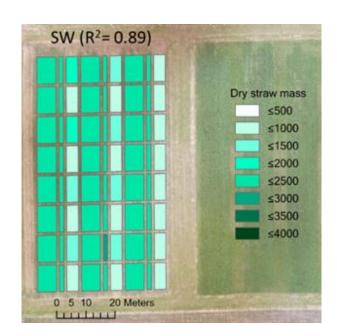






Grain yield (kg ha⁻¹)





straw mass (kg ha⁻¹)

Estonian University of Life Sciences in winter

Estonian University of Life Sciences in early autumn

email me: kai-yun.li@student.emu.